
C1M6

Limits

Graduating from high school in 1956 and driving cars with wide front seats and no seatbelts, one
developed a sense of how things were going on a date by where she chose to sit. If she sat by the door and
gripped the armrest with white knuckles, then things weren’t going well. On the other hand, if she sat close,
then one had to guard against grinning stupidly and spoiling the moment. “Close to” had real meaning.
This is also true in mathematics whenever limits are being discussed. There are always two ingredients in
the discussion and they behave as accuracy and control, and accuracy always precedes control. Let’s consider
the following sequence of numbers:

x1 = 1

x2 = 1.4

x3 = 1.41

x4 = 1.414

x5 = 1.4142

x6 = 1.41421

x7 = 1.414213

x8 = 1.4142135

x9 = 1.41421356

x10 = 1.414213562

.

.

x2
1 = 1

x2
2 = 1.96

x2
3 = 1.9881

x2
4 = 1.999396

x2
5 = 1.99996164

x2
6 = 1.9999899241

x2
7 = 1.999998409369

x2
8 = 1.99999982358225

x2
9 = 1.9999999932878736

x2
10 = 1.999999998944727844
.

.

The right column lists the squares of the left column, and we can see that the numbers in the right column are
getting ‘closer’ to 2. Of course, this means that the numbers in the left column are getting ‘closer’ to

√
2. It

is certainly fair to say that we are approximating
√
2 by increasing our accuracy one place each time we select

a new number in the left column. Suppose that we wanted to approximate
√
2 to within .000001, which we

may regard as an accuracy. Certainly if we go down our list to x9 and look at x2
9 = 1.9999999932878736

and at |(x9)2 −2| = .0000000067121264, we see that we have achieved our accuracy. But, where does control
fit in here? Note first that the numbers that we would list below x9 would be even closer to

√
2 than x9

is, we control the situation by selecting a point on our list where our accuracy is achieved for all the rest of
the list. But, our focus will be on limits of functions rather than on sequences.

Let’s assume that we have a laser attached to a rifle and that it is adjusted so that when the rifle is
fired at a target, the bullet will strike exactly where the laser points at that instant. But, the person firing
the weapon is not perfectly rigid and the aim can vary. Suppose further that the “bull’s-eye” is ten inches
across and we wish to hit the bull’s-eye. In effect, we have selected an accuracy of 5 inches. To make things
simpler, assume that the butt of the rifle is set on a fixed point and that we can measure the deviation of the
barrel tip from ‘perfect’. The question becomes, “What is a permissible deviation from perfect that ensures
that the bullet will strike the bull’s-eye?” This is our control. Suppose that when the deviation is less than
.0357 inches from perfect, we are assured that the bull’s-eye will be struck. For an accuracy of 5 inches we
found a control of .0357 inches that would guarantee that the accuracy would be achieved. It would seem
that for each accuracy selected, we could find a permissible deviation (control) that would guarantee that
the bullet would strike the target within the chosen accuracy of the center of the bull’s-eye. And this is how
limits work.
Definition: (Limit of a function) We write

lim
x→a

f(x) = L

if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever x �= a and |x − a| < δ ,
then it follows that |f(x)− L| < ε .

This is just a precise way of saying that the values of f(x) are as close to L as we like whenever x is
close enough to a , but is not equal to a . We call L ‘the limit of f(x) as x approaches a ’.
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Reminder: |x − a| < δ ⇐⇒ a − δ < x < a+ δ

It is important now to comment on how when we are discussing a limit at x = a , we actually ignore
the value, if any, of the function at a . In fact, we frequently look at only what is happening when x < a
(left-hand limit) or at when x > a (right-hand limit). Then we compare our answers.

Suppose that f(x) =
x2 − 3x+ 2

x − 1 . We see immediately that f is not defined at x = 1. This does not

mean that lim
x→1

f(x) does not exist however. The graph is displayed on the left below.
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The Maple code shown below produced the plot on the right above, in addition to the output that is
displayed.

> restart:
> f:=x->(xˆ2-3*x+2)/(x-1);

f := x → x2 − 3x+ 2
x − 1

> plot(f(x),x=0..3,scaling=constrained); Output above on right
> Limit(f(x),x=1)=limit(f(x),x=1);

lim
x → 1

x2 − 3x+ 2
x − 1 = −1

What should we learn from this? Maple may not show a ‘hole’ in a graph, so we must not depend on
Maple to show us problem points. When taking a limit in Maple and a capital ‘L’ is used, the expression is
inert. That is, the operation is not executed. On the other hand, the lower case ‘l’ allows Maple to complete
taking the limit.

Graphical discussion: The objective here is to show a picture of how a limit works by examining a
graph of two functions, g and h , demonstrating the process. First, there is an“x” value a at which the
limit is to be discussed. Then by some mysterious process we select the limit L and any accuracy e > 0.
Now we draw two symmetric horizontal lines, y = L − e and y = L+ e which determine our bounds. Then
we consider two symmetric vertical lines about x = a and all the points between, except a itself. The
question is, “Can we move the lines together by making the number d smaller, but still positive, and have
the functional values project up to the graph and over to the y -axis in such a way that the projected values
remain between the two horizontal lines?” In the first diagram below the answer is “yes”, and in the second
the answer is “no”. In fact, there is not even a candidate for L in the second one because of the manner in
which the values of h(x) are split.
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In the case of g(x) above, no matter how small we make e , we can always find a d small enough so that
the diagram above on the left is valid. This means that lim

x→a
g(x) = L . The function h(x), as drawn, has no

limit at x = a .
We have mentioned one-sided limits, and now it is time to be specific about them. The function h

above will serve as our mental picture. What happens when we restrict x so that a − d < x < a (left-hand
limit), or so that a < x < a + d (right-hand limit)? As x approaches a from the left-hand side we sense
that h(x) is getting close to a number which we will call L1 . Also, as x approaches a from the right-hand
side h(x) is getting close to a number L2 . It is obvious that L1 and L2 are not the same numbers in this
case. For completeness, we will provide precise definitions of one-sided limits.
Definition: (Left-hand limit of a function) We write

lim
x→a−

f(x) = L1

if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever a − δ < x < a , then it
follows that |f(x)− L1| < ε .
Definition: (Right-hand limit of a function) We write

lim
x→a+

f(x) = L2

if for each ε > 0 (accuracy) there is a number δ > 0 (control), so that whenever a < x < a + δ , then it
follows that |f(x)− L2| < ε .

Here is the graphical picture of what is happening. If we select a smaller accuracy (e > 0), then we may
select a smaller control (d > 0), so that the functional values of those x ’s lie within the requested range close
to the limit. Note that we only provided one half of the graph of h(x) in each case. This is to emphasize
that only what happens on the left and right sides respectively of x = a matters when determining the
one-sided limits.
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lim
x→a−

h(x) = L1 lim
x→a+

h(x) = L2

It should be obvious that there is a relationship between limits and one-sided limits. We usually tie
this up nicely with a theorem that shows the equivalence of two statements. But, it is a little easier for the
student to understand if it is stated as two related theorems and a corollary, and that is what we will do
here.
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Theorem A:
lim
x→a

f(x) = L =⇒ lim
x→a−

f(x) = L and lim
x→a+

f(x) = L

Theorem B:

lim
x→a−

f(x) = L1 and lim
x→a+

f(x) = L2 and L1 = L2 =⇒ lim
x→a

f(x) = L1 (= L2)

Corollary:

lim
x→a−

f(x) = L1 and lim
x→a+

f(x) = L2 and L1 �= L2 =⇒ lim
x→a

f(x) does NOT exist

Maple Example: A function f may be defined by

f(x) =




−x, if −1 ≤ x ≤ 0;
2x+ 1, if 0 < x < 1;
2, if x = 1;
4− x2, if 1 < x ≤ 2.

Here is a look at the graph of f between −1 and 2.
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Suppose we want to find if f has a limit at x = 0 and x = 1. We look at the graph for inspiration
and realize that if we stay to the left of x = 0, then the function is tending to 0 as x gets closer to the value
0. Also, if we stay to the right of x = 0 and allow x to decrease towards 0, then the values of f are getting
close to 1. It would seem that the left-hand limit is 0 and the right-hand limit is 1. Then, if we take the
same approach at x = 1, but we must ignore x = 1, and allow x to get closer and closer to 1, then f(x)
will get closer to 3, no matter which side of 1 x happens to lie on. All this suggests intuitively that

lim
x→0−

f(x) = 0, lim
x→0+

f(x) = 1 =⇒ lim
x→0

f(x) does not exist

lim
x→1

f(x) = 3

Now we turn to Maple.
> restart:
> f:=x->piecewise(x>=-1 and x<=0,-x,x<1,2*x+1,x=1,2,x>1 and x<=2,4-xˆ2);

f := x → piecewise(−1 ≤ x and x ≤ 0,−x, x < 1, 2x+ 1, x = 1, 2, 1 < x and x ≤ 2, 4− x2);
> limit(f(x),x=0,left);
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0
> limit(f(x),x=0,right);

1
> limit(f(x),x=0);

undefined
> limit(f(x),x=1);

3
> f(-1/2); f(1/2); f(1);

1
2
2
2

You see above an example of how to define a function piecewise. You list the conditions on x first, and
then the function’s values for those x ’s. When there are two conditions on x , you must separate them with
‘and’. You see how easy it is to obtain regular and one-sided limits.

C1M6 Problems: Use Maple to plot the graphs and to find the limits at the indicated points, if they
exist.

1. f(x) =
sin(2x)
3x

, −π
2 ≤ x ≤ π

2 , at x = 0.

2. g(x) = sin
(
1
x

)
, −π ≤ x ≤ π , at x = 0.

3. h(x) = x sin
(
2
x

)
, −π ≤ x ≤ π , at x = 0.

4. F (x) =
sin(x)− x)

x3 , −π ≤ x ≤ π , at x = 0.

5. G(x) =

{
x+ 1, if −1 ≤ x ≤ 0;
x2, if 0 < x ≤ 2;
6− x, if 2 ≤ x ≤ 4.

, at x = 0 and x = 2.
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